Old Exam Questions:

The graph below represents the distance (in yards), $\mathrm{D}(\mathrm{t})$, traveled by the Mars Rover vehicle up to time (in hours).

(a) How long did it take the Rover to travel the first 25 yards?
(b) What was the ATS of the Rover at two hours?
(c) Find a time t such that

$$
\frac{D(t)-D(2)}{t-2}=2.5
$$

(a) Compute the MR at $q=300$ Things.
(b) Find the longest interval over which the AR is between 0.50 and 0.80 dollars per Thing.
(c) Suppose FC = $\$ 300$. What
quantity will maximize profit and what is the maximum profit?

(a) Compute BEP.
(b) Compute MC at $\mathrm{q}=5$
(c) Compute change in TC from 7 to 15
(d) Compute AVC(6)
(e) If market price is $\$ 1.25$, what is the value of maximum profit?

(a) Find the time at which ATS is 2 mile per minute.
(b) The car's average speed from t $=15$ to $t=b$ is 0.5 miles per minute. What is b ?

The graph below gives the total amount of water $A(t)$ that flows into a reservoir.

(a) Compute the largest value of $\frac{A(t)}{t}$
(b) Find the average rate of flow of water into the reservoir from 8 am to 11am.

(a) Compute the total cost of producing 90 pens.
(b) Suppose market price is $\$ 2.50$ per pen. Should you shut down production?
(c) Suppose market price is $\$ 4.50$ per pen. What is the maximum possible profit?

